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ABSTRACT
Relationship-based access control (ReBAC) has been widely
studied and applied in the domain of online social networks,
and has since been extended to domains beyond social. Us-
ing ReBAC itself to manage ReBAC also becomes a natural
research frontier, where we have two ReBAC administrative
models proposed recently by Rizvi et al. [30] and Stoller [33].
In this paper, we extend these two ReBAC administrative
models in order to apply ReBAC beyond online social net-
works, particularly where edges can have dependencies with
each other and authorization for certain administrative oper-
ations requires provenance information. Basically, our policy
specifications adopt the concepts of enabling precondition
and applicability preconditions from Rizvi et al. [30]. Then,
we address several issues that need to be considered in order
to properly execute operation effects, such as cascading re-
vocation and integrity constraints on the relationship graph.
With these extended features, we show that our administra-
tive models can provide the administration capability of the
MT-RBAC model originally designed for multi-tenant col-
laborative cloud systems [34].

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection—Unau-
thorized access

Keywords
Access Control; Relationship; Administrative Model

1. INTRODUCTION
The rapid emergence of online social networks (OSNs)

has led to emergence of several relationship-based access
control (ReBAC) models in this domain, in both research
and practice. In contrast with conventional access control,
ReBAC determines access in terms of relationships among
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users and resources. Considerable research has been con-
ducted on the extensions of ReBAC schemes in the context
of OSNs [2,6–9,14,16], offering users more fine-grained and
expressive solutions than current commercial systems. In
addition to social computing, Fong et al. proposed a series
of ReBAC models that use modal logic as policy specifica-
tions and seek to apply ReBAC to general computing sys-
tems [2, 14, 16]. The RPPM model developed by Crampton
et al. also intends to employ ReBAC to applications be-
yond social computing [11], with policy specifications sim-
ilar to path expressions in Cheng et al.’s proposals for Re-
BAC [7, 8]. The name “RPPM” stands for “relationships,
paths, and principal-matching”.

Administration of ReBAC has to be carefully addressed,
because a change of relationships may result in change of
authorization. The dynamic and decentralized nature of
OSNs, where ReBAC is mainly deployed so far, suggests
a unified but decentralized solution to enforce administra-
tion in a scalable and efficient way. Following the prior suc-
cess of using role-based access control (RBAC) to manage
RBAC [10, 19, 21, 26, 31, 35], a natural direction for ReBAC
adminstration would be using ReBAC itself to manage Re-
BAC.

Very recently we have seen proposals from researchers
in this direction. Two groups of researchers extended the
RPPM model by Crampton et al., and independently de-
veloped their models for ReBAC administration. The main
contribution of Rizvi et al. [30] lies in the implementation
of ReBAC in a medical record system, where administrative
actions regarding relationship edges are addressed in terms
of security preconditions and execution effects. Stoller’s
RPPM2 model [33], on the other hand, focuses on policy
specifications and provides a complete coverage of ReBAC
administration, including changes on entities, edges, and
policies.

In this paper we seek to extend the ReBAC administration
models cited above, inspired by an application domain for
ReBAC beyond those considered in the literature thus far.
The concept of multi-tenancy is essential to cloud comput-
ing, where multiple customers are served virtual resources
within a single, shared physical computing environment. In
addition to isolating tenants from each other, cloud service
providers have incorporated facilities for authorized cross-
tenant interaction. Based on trust relations among ten-
ants, a multi-tenant RBAC model, namely MT-RBAC, has
recently been developed for this purpose. MT-RBAC has
been defined in traditional RBAC terms in [34]. However,
it can alternatively be viewed as a ReBAC model. MT-
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RBAC features tenant trust relation, user-ownership, role-
ownership, and object-ownership in addition to user-role as-
signments and permission-role assignments in the original
RBAC model [13, 32]. These various relationships between
users, roles, objects, and tenants can be cast as a relationship
graph, analogous to the social graph in OSNs and thereby
exploited for ReBAC authorization and administration.

A significant difference between the OSN domain wherein
ReBAC emerged and more traditional IT (information tech-
nology) domains such as MT-RBAC is in the nature of in-
tegrity requirements for the relationship graph. Consider
the familiar friend relationship in Facebook. Creation of a
friend relation between, say Alice and Bob, often requires a
prior friend-of-friend relation through some common third
user, say Cathy [15]. However, once established the friend
relationship between Alice and Bob will persist even if Cathy
drops her friendship with either one or both of them. In MT-
RBAC however the dependence of relationships on other re-
lationships endures beyond the initial creation. To be con-
crete, a user u owned by tenant x can be assigned to a role
r owned by tenant y only if tenant x trusts tenant y. This
tenant-tenant trust is required not only when the u to r re-
lationship is established but also subsequently. Therefore, if
the tenant trust relationship is revoked at some later time
there is an obligation to also revoke the u to r assignment.
Depending on policy requirements this may entail a cascad-
ing revocation, which introduces subtleties in defining an
appropriate ReBAC administration model. While cascad-
ing revocation has been extensively studied in the literature
(e.g. [1,12,18]), to the best of our knowledge this paper is the
first to incorporate this phenomenon in context of ReBAC.

In this piece of research, we develop a family of three
administrative models for ReBAC. Our first contribution is
the base model called AReBAC1 that formally represents the
administrative model proposed by Stoller [33]. It also aug-
ments the capability of Stoller’s model by including con-
sistency checking functionality to the administrative oper-
ations and adding support for pre-applicability conditions
proposed in [30]. A pre-applicability condition seeks to pre-
serve the integrity constraints of the relationship graph. Our
second contribution is AReBAC2 that extends AReBAC1 to
support cascading revocation. We propose a cascading re-
vocation algorithm that is specifically designed for the con-
text of ReBAC. We also conduct evaluation on the algo-
rithm. Our final contribution is AReBAC3 that offers ad-
ditional ability to address authorization based on prove-
nance information. To summarize, this work identifies and
addresses some important issues in ReBAC administration,
which the existing administrative models have not consid-
ered and, henceforth, promotes ReBAC administration be-
yond the conventional context of social computing. These
models are inspired by considering administrative require-
ments for the MT-RBAC model. They are not intended
as a replacement or generalization of MT-RBAC but rather
proposed as a relation-based framework to explore ReBAC
administrative issues. MT-RBAC is a rather novel ReBAC
instance relative to current ReBAC literature, and brings to
light significant administrative aspects which have not been
recognized so far.

The paper is organized as follows. In the next section,
we describe the motivating administrative issues inspired by
MT-RBAC. Section 3 formally introduces AReBAC1. Sec-
tion 4 presents AReBAC2 and AReBAC3, and compares them

Figure 1: Multi-tenant RBAC model structure

with the prior work. This section also contains our proposed
algorithm for cascading revocation. Section 5 analyzes per-
formance of the algorithm. Section 6 reviews related work
regarding ReBAC and administrative access control models.
Section 7 gives our conclusions.

2. MOTIVATION
Administrative operations are more risky than regular op-

erations. A properly designed administrative model needs
to ensure that these operations are performed safely. It be-
comes an even more important requirement for decentralized
systems as these operations can be done by regular users
who may not possess the expertise as a system administra-
tor does. Moreover, administrative operations must com-
ply with the business logic of the system and the semantics
of the data model. One such system is multi-tenancy au-
thorization in cloud computing environment where dynamic
trust relations among the tenants (organizations) drive their
collaborations. The main challenge here is dynamic admin-
istration of user privileges that includes dynamic cascading
revocation of user privileges and conflict resolution of the
requested administrative operations from multiple tenants.

Recently, the MT-RBAC model [34] extends traditional
role-based access control model to provide multi-tenancy au-
thorization. MT-RBAC is defined in the traditional style
of RBAC models. In this paper we recast it in the style
of ReBAC models, which leads us to consider some admin-
istrative issues with respect to MT-RBAC which are not
so convenient to formalize in the RBAC style formulation.
Motivated by these considerations we extend the ReBAC ad-
ministrative models proposed in [30, 33]. We show how to
configure variations of MT-RBAC in these extended admin-
istrative models in a relatively straightforward manner.

MT-RBAC consists of four components as illustrated in
Figure 1: tenants (T), users (U), roles (R) and permissions
(PRMS). A tenant is a virtual partition of a cloud service.
A user is an individual owned by a single tenant via user-
ownership (UO) relation. Each tenant may own multiple
users. Hence the UO relation is many-to-one, relating mul-
tiple users to one tenant. A role is a job function associated
with a single tenant while a tenant may own multiple roles.
Thereby, role-ownership (RO) is many-to-one. A permission
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is a specification of a privilege to an object in a tenant. A
permission is denoted as a 3-tuple (privilege, tenant, object).
For example, (read, Dev.E, /root/) represents a permission
of reading the “/root/” path on tenant Dev.E. Every permis-
sion is associated with a single tenant, who can own multiple
permissions. Therefore, permission-ownership (PO) is also
many-to-one. User-role assignment (UA) and permission-
role assignment (PA) relations connect users and permis-
sions through roles. These are many-to-many relations.

Tenant-trust (TT) denotes a many-to-many trust relation
between tenants. We use notation � to represent trust be-
tween two tenants so TA � TB means TA (trustor) trusts
TB (trustee). The reflexive (but not transitive, symmetric
or anti-symmetric) TT relation enables cross-tenant collab-
oration. If TA � TB then users of TA can be assigned to TB ’s
roles by TB , hence gaining permissions that are associated
with TB ’s roles. Note that due to reflexivity TA � TA always
holds so intra-tenant assignment of TA’s users to TA’s roles
is always allowed. The main objective of MT-RBAC is to
enable cross-tenant assignment based on TT.

In MT-RBAC, along with the removal of a tenant en-
tity, its correlated trust relations and authorization assign-
ments should also be removed accordingly. Similarly, the
revocation of a trust relation between two tenants should
induce revocation of its correlated user-role assignments as
well. This property is known as cascading revocation, how-
ever, the current MT-RBAC literature does not provide any
mechanism to address it. Inspired by MT-RBAC we also
recognize that edges and nodes in ReBAC systems can have
dependency and correlation with each other, hence, cascad-
ing removal of nodes/edges is intrinsic to ReBAC. To make
the administrative model comprehensive, we need to address
the dependency issues adequately. The applicability check
prior to the operation and the post-operation effects can ac-
commodate the cascading revocation. It is more convenient
to consider these issues in a ReBAC setting rather than in
the traditional RBAC style of models.

Furthermore, in some settings for MT-RBAC, such re-
lations can be added, altered or removed by multiple ad-
ministrative users from different tenants, causing potential
conflicts or unexpected results. To clarify the situation,
the administrative model should offer the ability to distin-
guish administrative operations initiated by different users,
or support additional data structures to record the prove-
nance (history) of these operations. Again, some relations
in MT-RBAC such as the user-ownership relation between
users and tenants have to be many-to-one so each user has
a unique owner tenant. Similarly for the tenant-role rela-
tionship. In general there are many global integrity con-
straints like these two examples, which need to be main-
tained before and after each administrative operation is con-
ducted. These constraints specify the configurations of the
data model for the relationship graph that are considered se-
mantically correct. However, the integrity constraint check
is often overlooked in ReBAC literature, since authorization
in ReBAC mainly focuses on specifying path conditions that
regulate the requesting subject. Specifically, the RPPM2

model copes with the situations regarding adding an edge
that already exists or removing an edge that does not ex-
ist, but these special cases are not further generalized in the
policy language.

Motivated by these problems, we extend the existing ad-
ministrative ReBAC models and propose a family of three

models that capture global integrity policy checks, cascad-
ing revocation, and multi-ownership conflict, respectively.

3. BACKGROUND
In this section, we first summarize the RPPM2 [33] model.

We then formally present our proposed core administrative
model for ReBAC, namely AReBAC1.

3.1 RPPM2

In context of developing an administrative model for Re-
BAC, Stoller [33] proposed RPPM2 (RPPM Modified), which
extends the RPPM model proposed in [11]. Motivation and
illustrative examples of these models are given in the respec-
tive papers. This paper introduces a family of administra-
tive models, which basically extends the RPPM2 model. We
now describe the RPPM2 model as follows.

System Model and System Instance. A system model
comprises a set of types T , a set of relationship labels R, a
set of symmetric relationship labels S ⊆ R and a permissible
relationship graph GPR = (VPR, EPR), where VPR = T and
EPR ⊆ T × T × R. Given a system model (T,R, S,GPR),
a system instance is defined by a system graph G = (V,E)
and a type function τ : V → T , where V is the set of entities
and E ⊆ V ×V ×R. G is well-formed if for each entity v in
V , τ(v) ∈ T , and for every edge (v, v′, r) ∈ E, (τ(v), τ(v′), r)
∈ EPR.

Request. A request req is in the form of (s, op(v1, . . . , vn)),
where s is the subject (i.e., an entity that requests for the
operation), op is the operation, and the vi are target entities
on which the operation will perform.

Path Expression and Path Condition. Path expres-
sions are defined recursively: � is a path expression; r is a
path expression, for all r ∈ R; if π and π′ are path expres-
sions, then π;π′, π+, π∗, and π̄ are path expressions. A
path condition in RPPM2 has the form e1 ·π ·e2, where each
ei is an entity constant or a variable that belongs to VPR of
the permissible relationship graph GPR = (VPR, EPR), and
π is a path expression. A path condition e1 · π · e2 holds if
there exists a substitution θ mapping the variables (if any)
in the path condition to values such that the system graph
contains a path from e1θ to e2θ that matches πθ, where tθ
denotes the result of applying substitution θ to term t.

Principal Matching. Principal matching replaces a path
between two entities with a single principal name. The prin-
cipal name is a shorthand for path expression. In RPPM2, a
name can be defined to represent multiple path expressions.

Authorization Rule and Authorization Policy. An
authorization rule R is defined in the form (req, c, d), where
req is a request, c is a conjunction of path conditions, and
d is binary decision. A rule says that the decision d is true
for request req if all conditions in c are satisfied. An autho-
rization policy is a collection of authorization rules.

Defaults. A system-wide default decision can also be
specified, which is used when no rules and no other defaults
apply. We refer interested reader to [11,33] for details.

Figure 2 shows the ReBAC configuration for MT-RBAC
that we described in section 2. In this configuration, the set
of types T contains tenant, user, role and permission. The
set of relationship label R contains UO, RO, PO, UA and
PA. Figure 2-A shows the permissible relationship graph.
Suppose there is a rule (read, c, d) in R, where c is the con-
dition defined as user . UA . role ∧ role . PA . permission.
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Figure 2: ReBAC for MT-RBAC example

Now, given the system graph in Figure 2-B, if user1 tries to
access the permission perm1, the value of d in the rule (read,
c, d) is true.

3.2 AReBAC1 Model
The administrative model proposed by Stoller [33] includes

operations to add and delete entities, edges, and autho-
rization rules, plus three administrative actions to set de-
faults. We only focus on administrative operations to add
and delete edges. We now formally present AReBAC1, which
is the core model of our proposed family of administrative
models. Basically, it summarizes these two operations as
they are proposed in [33] with the extension of consistency
policies and global integrity constraints. Consistency poli-
cies ensure that the system graph G = (V,E) is always well-
formed after allowing each administrative operation. The
global integrity constraints are semantically equivalent to
“applicability precondition” defined by Rizvi et al. [30] that
constrain operations based on certain conditions for both
primary and auxiliary participants. Note that, we augment
this model for supporting cascading revocation of edges in
the following section.

AReBAC1 provides two operations called Add and RM
respectively to add and remove edges to a system graph G
= (V,E), where each operation is a function that takes as
input the administrative entity that performs the operation,
a relationship label and two entities between which the edge
with given relationship label will be added/removed. Each
operation also evaluates the consistency policy in order to
keep G well-formed. Formally these two operations are de-
fined as follows (the notation for defining these operations is
similar to the notation of schema used in NIST RBAC [13]).

Add(eadmin, e1, e2, r) C
eadmin ∈ V ∧ e1 ∈ V ∧ e2 ∈ V ∧
r ∈ R ∧ (τ(e1), τ(e2), r) ∈ EPR

E′ = E ∪ {<e1,e2, r>}B
RM(eadmin, e1, e2, r) C
eadmin ∈ V ∧ (e1, e2, r) ∈ E

E′ = E − {<e1,e2, r>}B
Here, a successful execution of an operation is allowed

if the specified consistency policy is satisfied. Note that,
eadmin is an entity, which we sometimes refer to as adminis-
trator. Besides she is authorized to perform an operation, an
administrator is similar to other entities. For example, she
may also have non-administrative permissions. In this sys-
tem, the authorization of an administrator for an operation
is regulated by a fixed set of positive policy rules P. Each
policy rule p ∈ P has the form p = OP(eadmin, e1, e2, r) ←
enableC(eadmin, e1, e2) ∧ preC(e1, e2), where OP is Add or

RM . This represents that an administrator is authorized to
request the operation if both predicates preC and enableC are
satisfied. An enableC is an enabling precondition that spec-
ifies certain relationship between the administrator, eadmin,
and two target entities, e1 and e2. An enableC can be spec-
ified as conjunction of multiple path conditions and verified
with eadmin, e1, e2 and other necessary instances of the sys-
tem graph. On the other hand, a preC specifies relations
between two target entities disregarding the administrator
who requests to perform the operations. Unlike enableC,
preC is not specified as path condition, rather it should be
specified as hybrid logic formula as mentioned in [30]. In
this paper, we do not aim to develop policy specification
language for preC. Instead, we express them using simple
set theory notation. Note that, in a policy rule p ∈ P one
may also specify one or both predicates to be always true.

Table 1 shows examples of AReBAC1 based on Figure 1.
Example 1 shows an Add operation for a tenant-trust (TT)
edge where tenant1 is the eadmin who wants to add the edge
between tenant1 and tenant2. Note that, in order to au-
thorize this operation only consistency check is necessary,
hence, predicates enableC and preC are always true. In ex-
ample 2, tenant1 wants to remove a user-role (UA) edge
between user1 and role1. Here, besides consistency condi-
tion, enableC ensures that both user1 and role1 belong to
tenant1. However, it does not require an applicability pre-
condition, thereby preC is always true. Finally, in example
3, for adding a user-ownership (UO) between tenant2 and
user2 no enableC is required. However, according to MT-
RBAC, UO is one-to-many relation. Hence, it is necessary
to check if user2 already belongs to another tenant or not.
A preC checks this global integrity constraint by checking
if an edge (—, user2, TT) already exists in G. Here, ‘—’
represents all the tenants in the system. According to Fig-
ure 1 there exists no such edge and the request should be
authorized.

4. ENHANCEMENT OF THE MODEL
In this section, we extend the AReBAC1 model to facilitate

cascading removal of edges and dynamic conflict resolution
by provenance support.

4.1 AReBAC2: Cascading Revocation
In ReBAC, creation of some edges might depend on the

existence of another edge, whereby, dependent edges need
to be removed at the time of removal of the dependency
edge. We define this situation as cascading revocation of
edges. Cascading revocation implies that the operation will
trigger a series of recursive removal of edges on the graph
in addition to the direct consequence of the operation. We
augment the functionality of AReBAC1 here in AReBAC2 to
support this cascading revocation.

AReBAC2 augments the representation of each policy p ∈
P that regulates RM operations as follows.

p = RM(eadmin, e1, e2, r) ← enableC(eadmin, e1, e2) ∧
preC(e1, e2) : Crevoke(e1, e2, r).
Crevoke(e1, e2, r) is a function that takes as input e1, e2

and r, and returns a set of edges that needs to be removed
(possibly empty) when the policy p is used to authorize op-
eration RM(eadmin, e1, e2, r). Note that, edges returned
by the function are being removed without further autho-
rization. In many systems, a cascading revocation is desired
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Table 1: The Policies in AReBAC1: An MT-RBAC Example
Description Operation Enabling Pre-Condition Applicability Pre-Condition
1. Add tenant-trust
edge

Add(tenant1, tenant1, tenant2, TT) True True

2. Remove user-role
assignment edge

RM(tenant1, user1, role1, UA) user · UO · tenant ∧ role
· RO · tenant

True

3. Add user-ownership
edge

Add(tenant2, tenant2, user2, UO) True (—, user2, UO) 6∈ E

instead of a non-cascading one. For instance, in MT-RBAC,
along with the removal of a tenant, its correlated trust rela-
tions, users, roles and permission assignments should be also
removed. Again, when a tenant trust relation is revoked, the
user-role assignments initiated by the trustee tenant also re-
quire to be consequently removed. Similar examples can
be found in online social networks, health care systems, and
database systems as well, where dependency of relationships
exists.

Figure 3 illustrates two examples of the cascading revo-
cation in MT-RBAC scenarios. Figure 3-A shows that the
removal of a user-ownership (UO) edge between tenant1 and
user1 also causes removal of user-role assignment (UA) edge
between user1 and role1. In this case, Crevoke takes tenant1,
user1 and UO as parameters and returns a set that contains
a tuple (user1, role1, UA). Similarly, in Figure 3-B, when a
revocation of a TT relation is issued, the correlated cross-
tenant user-role assignments specified by the trustee are au-
tomatically removed. Here, Crevoke takes tenant1, tenant2
and TT as parameters and returns the set {(user1, role2,
UA)}.

For a particular policy, a Crevoke may return zero to mul-
tiple edges that are revoked as a consequence of revocation
of an edge. Note that, identification of such edges in an ef-
ficient way is a non-trivial process since a system graph can
have thousands of edges with arbitrary cascading relations.
One trivial solution is to maintain relations between each
dependency and dependent edge pair in the system graph.
When an administrator adds a new edge, the system will
find the dependency edges for it and create a new relation.
Later, if the dependency edge is removed, dependent edges
for it will be retrieved from the maintained relations and
removed accordingly. However, this process is not scalable
in a large system. Toward this end, we develop a scalable
solution for identifying dependent edges.

4.1.1 Dependent-Edge Discovery Algorithm
We discuss our developed procedure that dynamically dis-

covers dependent edges. In this procedure, we maintain a
function called Φdependency that maps an edge (e1, e2, label)
to a tuple 〈 Path, Rd 〉. Note that, (e1, e2, label) is the
dependency edge that will cause cascading removal of other
edges from system graph G. Here, Path is an ordered set
that contains relationship labels in order and Rd is another
set containing relationship labels where edges with these la-
bels will be removed. Note that, Path can contain multi-
ple instances of same relationship label. Algorithm 1 finds
the dependent edges. Basically, it is based on a depth-first
search algorithm, where, for a given dependency edge (e1,
e2, label), it starts with a source e1 (or possibly e2) in G
and recursively tries to reach destination node e2 (or e1). In
order to reach e2, it only visits edges according to the given

Figure 3: Cascading revocation during the removal
of UO and TT edges

order of the labels in Path. Line 14 of the algorithm shows
that a label called curE is picked from the top position of
Path. Then, lines 16-17 ensures that the algorithm will only
visit next node ei from node es, if the edge between es and
ei is labeled with curE. Line 18 further checks if the label
is in Rd and marks it as dependent edge by putting it in
set Td. Then, this scenario is recursively applied for ei with
next top label in Path. Finally, if it reaches destination node
ej , lines 9-13 check if all the labels are used from Path, and
then add the dependent edges from Td to Ed. Finally, the
algorithm returns all the dependent edges in Ed (line 7).

For the example given in Figure 3-B, Φdependency maps
(tenant1, tenant2, TT) to the tuple 〈 Path1, Rd1 〉 where
Path1 = (UO, UA, RO) and Rd1 = {UA}. Then, algorithm 1
takes as input tenant1, tenant2, Path1, and Rd1 and returns
the set {(user1, role2, UA)}, which edges should also be
removed. Note that a cascading revocation can be applied to
all the dependent edges that the revokee (dependency) edge
previously enabled and, recursively, all the dependents of
the dependents of the revokee edge or entity. For simplicity,
we only consider one-level of cascading revocation here.

4.1.2 Time Complexity of Crevoke
In our proposed solution, the time complexity of Crevoke

depends on the complexities of algorithm 1 and Φdependency.
Φdependency is a mapping function and the time complexity
of it, to map an input edge to a tuple 〈 Path, Rd 〉, depends on
the implementation choice. We implemented Φdependency as
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Algorithm 1 Discover Dependent-Edge

Require: A source node es, a destination node ed, an or-
dered set of relationship labels Path, a set of relationship
labels Rd where edges with these labels are the depen-
dent edges.

Ensure: Returns a set of edges Ed that will be removed.
1: Ed := ∅
2: Visited := ∅
3: if Rd = ∅ or Path = ∅ then
4: return Ed

5: end if
6: Find Edges(es, ed, Path, Rd, Ed, Visited, {})
7: return Ed

8: procedure Find Edges(es,ed,Path,Rd,Ed,Visited,Td)
9: if es = ed then

10: if Path = ∅ then
11: Ed := Ed ∪ Td

12: end if
13: end if
14: curE := Path.top()
15: Visited := Visited ∪ es
16: for all ei ∈ V do
17: if ei /∈ Visited and 〈es, ei, curE〉 ∈ E then
18: if curE ∈ Rd then
19: Td := Td ∪ 〈es, ei, curE〉
20: end if
21: Find Edges(ei,ed,Path-{curE},Rd,Ed,Visited,

Td)
22: if 〈es, ei, curE〉 ∈ Td then
23: Td := Td − 〈es, ei, curE〉
24: end if
25: end if
26: end for
27: Visited = Visited − es
28: end procedure

HashMap, discussed in section 5, and its time complexity is
O(1). Each execution of the algorithm 1 performs a depth-
first search in the current system graph G = (V,E). We
assume that E is always represented as adjacency-list and,
therefore, the time complexity of the algorithm is O(V +E).
The overall time complexity of Crevoke, to find the set of
edges that needs to be removed due to dependency on a
removed edge, is O(V + E).

4.2 AReBAC3: Provenance Support
In ReBAC, relationships are utilized to make access deci-

sion. But it is likely the case that in a real world system,
other forms of information and knowledge will also come
into play together with relationships for achieving desirable
access control objectives. There has recently been a surge
of interest in harnessing provenance information to enable
additional versatile control capabilities not available with
conventional access control solutions [24,28].

Provenance refers to the documentation of the history of
a data item starting from its original sources to its current
state. Provenance data can provide utilities such as pedi-
gree information, query, usage tracking, versioning, data
auditing, and error detection, etc. Among various kinds
of provenance data and usage, we are particularly interested
in causality dependencies that record the flow of transac-
tions that occurred in the system, since they can provide us
the foundation for building and delivering more expressive
access control features.

The Open Provenance Model (OPM) [22] is a model of
provenance that aims to capture the causality dependencies

between entities. It provides a foundation for expressing
such dependencies, the provenance graph. A provenance
graph is defined as a directed graph, whose nodes are ar-
tifacts, processes and agents, and whose edges are causal
relationships between the aforementioned nodes. It can be
computed from the transaction records of the system. An
artifact is used to represent a state of a data object (e.g.,
an added edge or a removed edge). A process denotes an
action or a series of actions performed on or caused by arti-
facts, and resulting in new artifacts (e.g., create or remove
an edge). An agent corresponds to a user who executes the
action (e.g., a tenant). There are five causal relationships
defined in OPM: a process used an artifact; an artifact was
generated by a process; a process was triggered by a pro-
cess; an artifact was derived from an artifact; and a process
was controlled by an agent. We adopt these causal relation-
ships to represent dependencies among artifacts, processes
and agents.

We build our provenance feature on top of OPM as the
model enables us to capture and express the casuality depen-
dencies. We name the provenance-assisted model, AReBAC3.

Next, we present an exemplary usage of the provenance
support in the multi-tenancy scenario mentioned earlier. In
the previous MT-RBAC example, we assume that the user-
ownership is one-to-many, which means a user is restricted
to be owned by one single tenant. If many-to-many own-
ership is allowed, then a user can be assigned to multiple
tenants, thus making the authorization assignments more
complicated than before.

As shown in Figure 4, user1 is owned by tenant1 and
tenant2; meanwhile both tenant1 and tenant2 trust another
tenant tenant3. Due to the tenant trust with the owners,
the trustee tenant tenant3 is allowed to assign user1 to one
of its roles, say role1. Later on when one of the tenants, say
tenant2, decides to revoke the tenant trust relation it previ-
ously initiated, we will have to consider whether to remove
the UA relation between user1 and role1 or not.

There are many strategies to resolve conflicts among dif-
ferent administrators: permissions-take-precedence, denials-
take-precedence, recency precedence, distance precedence,
etc. This problem has been extensively studied in many
domains in the past, and a detailed consideration is out of
scope of this paper. We will leave it to the system archi-
tect to decide the conflict resolution policy. But first of all,
we need to distinguish the two assignments from different
tenants and then decide whether to remove them or not.

The RPPM2 model offers relationship label with typed
parameters. In our scenario, we can use typed parameters
to distinguish edges assigned by different tenants. The user-
role assignments become two separate edges (user1, role1,
UA(tenant1)) and (user1, role1, UA(tenant2)). Revocation
initiated by tenant2 will only remove the edge (user1, role1,
UA(tenant2)) and leave (user1, role1, UA(tenant1)) as it is.

An alternative way of distinguishing multiple ownerships
is to incorporate provenance information to edges. We can
capture the user-role assignment using the OPM provenance
graph illustrated in Figure 5. The UO edge (tenant1, user1,
UO) was generated by the process create1 controlled by
tenant1. Similarly, we can express the causal relationships
for edges (tenant3, role1, RO) and (tenant1, tenant3, TT).
There are three “used” edges from the process create4 to
three artifacts generated in the prior processes. These arti-
facts are input objects used in the process create4, indicating
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Figure 4: Two ways of distinguishing edges assigned
by multiple administrators

Figure 5: OPM provenance graph for adding UO
edge

that a complete execution of the process create4 requires the
existence of these three edges. The “wasGeneratedBy” edge
says that the process create4 was required to generate the
edge (user1, role1, UA).

The scenario depicted in Figure 4 can be captured in OPM
provenance graph as well, as shown in Figure 6. Both edges
(tenant1, tenant3, TT) and (tenant2, tenant3, TT) were
used to generate the user-role assignment (user1, role1, UA)
initiated by tenant3. Depending on the conflict resolution
strategy a system picks, the removal of the edge (tenant2,
tenant3, TT) would trigger either the removal of the edge
(user1, role1, UA) or an update on the UA edge (and its
metadata). In either case, a new artifact would be gener-
ated by the triggered process to reflect the change.

Figure 6: OPM provenance graph for removing UO
edge

With the provenance data, we can keep track of the his-
tory of the relationship edges without creating multiple edge
instances. The system is also able to get necessary informa-
tion to remove or update dependant edges as a response to
those changes that have been made in the system.

4.2.1 Discussion
The initial intention of introducing provenance informa-

tion to ReBAC is to capture and express causality dependen-
cies for assisting authorization decisions, such as resolving
conflicts and ambiguity due to multiple ownerships. There-
fore, we only need to model the provenance data and en-
able path queries on the provenance graph, which are in-
dependent from the formalization of the ReBAC language.
We choose the Resource Description Framework (RDF) [20]
data presentation to express the provenance data, as it nat-
urally supports a directed graph structure. Standard RDF
query languages, such as SPARQL [29], can be employed
to query over provenance data stored in RDF triples. The
provenance-assisted ReBAC model can be also extended to
enable provenance-based access control [28], which means
authorization decisions are made directly based on prove-
nance information, in addition to relationships. In this case,
we have to formalize provenance information in the exist-
ing ReBAC policy language. One possible way of such for-
malization can be achieved by extending the XACML lan-
guage [23], as described in [3, 24,25].

Querying over a provenance graph introduces additional
computational overhead. The performance of such query
depends on the shape of the provenance graph. As the sys-
tem evolves, the provenance graph eventually grows in both
width and depth. A performance study of a similar problem
was conducted in [24]. However, the evaluation and opti-
mization of the provenance graph query is beyond the scope
of this paper. The nature of the provenance graph query in-
dicates that, for the sole purpose of distinguishing multiple
ownerships, the typed parameter approach in the RPPM2

model is simpler and less costly. However, the provenance-
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based approach offers greater expressive power and richer in-
formation, which can be further utilized for many other pur-
poses. Provenance-based access control is definitely among
one of them. Multiple-level cascading revocation is another
usage example that cannot be facilitated through typed pa-
rameter but can be realized via provenance information.

4.3 Comparison with Existing Administrative
ReBAC Models

In [15], the proposed ReBAC model is designed to mimic
the authorization process in Facebook-style OSNs. It models
the communication protocol of friendship initiation and ter-
mination, and provides a discretionary policy administration
based on resource ownership, which has limited expressive
power compared with later proposals. The access control
framework introduced by Carminati et al. features autho-
rization, administrative and filtering policies in ontology-
based representations [4]. However, this framework does
not address administrative activities related to entities and
relationships. Cheng et al.’s URRAC model proposes to ar-
bitrate administrative activities using ReBAC, but it does
not elaborate the details about administration [7]. These
proposals are mostly targeted for OSN systems and are not
applicable to general-purpose computing systems.

The RPPM2 model [33] and the ReBAC implementation
for OpenMRS [30] are two administrative ReBAC models
appeared lately in literature. RPPM2 is a comprehensive
model that addresses administrative operations on entities,
relationships as well as authorization policies. The main
contribution of Rizvi et al.’s administrative model is on in-
corporating ReBAC in a production-scale system that orig-
inally uses RBAC. In particular, it mainly focuses on one
type of administrative operations: adding or deleting rela-
tionship edges. In addition to regulating who can perform
the operation, their hybrid logic-based policy language also
captures the applicability of the operation, aiming to com-
pletely preserve the security constraints.

Our work follows the policy language defined in RPPM2

and extends it to capture the issues we found in our use
cases. Our models seek to preserve the global integrity
constraints, address the cascading revocation as well as the
multi-ownership issue. We also aim to apply ReBAC to ap-
plications beyond OSNs, thus using MT-RBAC, an access
control model for collaborative cloud systems, for demon-
stration.

5. EVALUATION
The goal of the evaluation is to decide whether algorithm 1

can efficiently determine the set of dependent edges of a spe-
cific edge being removed. We implemented algorithm 1 using
Java with version 1.8.0 60. The experiments are performed
on an Intel Ci7 machine with 8 cores, 2.53 GHz and 16GB
RAM, running Ubuntu 14.04.1 LTS (Trusty).

5.1 Implementation and Input Instance Gen-
eration

In our code, we represented Φdependency, described in sec-
tion 4, as java HashMap, where the key is the id of an
edge and the value is the CascadingElement object. A
CascadingElement has two variables: a java Queue called
path and a java Set called rSet, which are the representa-
tion of Path and Rd of algorithm 1, respectively. Edges are
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Figure 7: Dependent-Edge discover time for exper-
iment 1
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iment 2

stored in a Set called E, where each edge is an object that
has an id, id of node1, id of node2, and a label.

We synthetically generate problem instances for our eval-
uation. We believe the values of the different parameters are
sufficient for a medium sized organization. We considered
100 types and 50 labels. Then we created the permissible re-
lationship graph GPR = (VPR, EPR), where |EPR| = 1000.
Based on GPR, we created the well-formed system graph G
= (V , E), where the size of V equals to 10000, each type
has 100 instance, and the size of E is 50000.

5.2 Evaluation Result
We populate Φdependency for 100 different edges. For each

edge in Φdependency, in the first experiment, we vary the size
of path from 50 to 500, where we ensure that there is at
least one valid path in the graph in the order of edges in
path. Note that, path can contain same relationship label
multiple times. However, each of them should be visited
once and in the order it is specified. Also, for each element
in Φdependency, we fix the size of rSet to 10. Then, for each
element in Φdependency, we execute the algorithm and record
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the average time. We also repeat the whole process of first
experiment for 15 times and record the average. From the
results shown in Figure 7, we can see that for 50 elements
in the path, the average time to discover the set is very
minimal (< 0.05 sec); for 500 elements it is 0.415 sec. In the
second experiment, we set the size of path to 500 elements
and vary the size of rSet from 10 to 50. We record the
average execution time of the algorithm. Similar to the first
experiment, this experiment is also repeatedly conducted for
15 times and the average time is recorded. The results shown
in Figure 8 indicate that time does not vary that much with
an increase in the size of rSet. Since each new element in
path increases one more round of recursion call, its impact
on the running time of dependent-edge discovery is larger
than that of the size of rSet.

6. RELATED WORKS
With the emergence and growth of OSNs over the last

decade, new access control schemes have been called upon
to address the issues that conventional access control ap-
proaches cannot properly address. In [5, 6], Carminati et
al. developed a pioneering work for access control in OSNs,
where authorization policies are specified in terms of type,
depth and trust level of the relationships. This type of access
control, namely relationship-based access control, exploits
relationships between users and resources as the basis for
authorization decision. Since the term was invented in [17],
ReBAC has undergone considerable development.

In [15], Fong et al. formalized the privacy preservation
mechanism in Facebook-style OSNs into a two-stage pro-
cedure. In addition to modeling the Facebook-style pol-
icy predicates, such as “only-me”, “only-friends”, “friends-of-
friends”, and “everyone”, the model is capable of expressing
some topology-based policies, including “degree of separa-
tion”, “clique”, and so on, which are not available in Face-
book and other well-known OSN systems.

Modal logic and its extension, hybrid logic, have been used
for expressing ReBAC policies in [2, 14, 16]. Fong et al. for-
mulated a ReBAC model and introduced a modal logic lan-
guage to compose complex relationship-based policies [14].
In a subsequent work, the modal logic proposed earlier was
extended and improved with more expressive power [16].
In [2], the authors adopted a hybrid logic to achieve bet-
ter efficiency and greater flexibility in policy specification.
Pang et al. also adopted a hybrid logic approach to formu-
late access control policies in their model for OSNs, where
public information is also exploited for regulating access [27].

Cheng et al. proposed a series of three ReBAC models
for OSNs that utilize regular expression-based notations to
specify policies. In [8], a sequence of relationship edge labels
forms a path expression, which can be interpreted as regular
expression. If there is a path between the access requester
and the resource owner satisfying the path expression in the
policy, the requested access is granted. A path-checking al-
gorithm is used to determine the existence of such qualified
path. The authors subsequently extended the model to in-
corporate resources and actions to social graph, and track
relationships among users and resources in addition to rela-
tionships between users and users [7]. Since multiple poli-
cies may be applicable to single resource, conflict resolution
policies were introduced to arbitrate authorization policies.
In another subsequent work, the model proposed in [8] was
extended to exploit attribute information of users and rela-

tionships for the purpose of access control, enabling a richer
policy language [9].

Several attempts have been made to adopt ReBAC in do-
mains beyond OSNs. The proposed work in [14] was aimed
for general-purpose computing systems, with an example
scenario of electronic health records. The RPPM model re-
cently proposed by Crampton et al. is a variant of ReBAC
model for general-purpose computing systems [11], where
policies are expressed in terms of path conditions similar to
path expressions in [8]. The RPPM model introduced autho-
rization principals, which are analogous to roles in RBAC.
In [33], the author developed the RPPM2 model, a direct ex-
tension of RPPM, that addresses administrative operations
in ReBAC. Rivzi et al.’s OpenMRS access control mecha-
nism [30] also features an administrative model for ReBAC,
addressing how to enable users to manage access control re-
lationships safely. Our work in this paper is based on these
two administrative models, building on the policy language
in [33] and the design objectives identified in [30].

7. CONCLUSION
In this paper, we present a family of three administra-

tion ReBAC models based on the policy language offered
in the RPPM and RPPM2 models. Our models cover the
administrative operations on edges. In addition to regu-
lating who can perform administrative operations, we iden-
tify three problems that were rarely discussed in the litera-
ture of ReBAC: integrity constraints, cascading revocation,
and multi-ownership of edges. We adopt and modify the
concept of enabling precondition and applicability precondi-
tion from [30] to express path conditions and integrity con-
straints. The cascading revocation is achieved by using our
proposed depth-first search-based algorithm, which discov-
ers the dependent edges that need to be removed. An evalu-
ation is conducted to show the effectiveness and efficiency of
the algorithm. The multi-ownership of edges can be prop-
erly distinguished by typed parameters or provenance data
incorporated in the models. We demonstrate that our Re-
BAC models are capable of expressing policies in MT-RBAC.

Still at its early stage, ReBAC administration will remain
a new research frontier for some time to come. Towards the
adoption of ReBAC in various other application domains,
many new opportunities will be identified along this direc-
tion. We will investigate these problems and enrich the
ReBAC models with greater flexibility and more expressive
power. One of the possible directions for us is to extend our
work to address policy administration, which is very critical
with essential decentralized components for ReBAC systems.
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